The spen family protein FPA controls alternative cleavage and polyadenylation of RNA.

نویسندگان

  • Csaba Hornyik
  • Lionel C Terzi
  • Gordon G Simpson
چکیده

The spen family protein FPA is required for flowering time control and has been implicated in RNA silencing. The mechanism by which FPA carries out these functions is unknown. We report the identification of an activity for FPA in controlling mRNA 3' end formation. We show that FPA functions redundantly with FCA, another RNA binding protein that controls flowering and RNA silencing, to control the expression of alternatively polyadenylated antisense RNAs at the locus encoding the floral repressor FLC. In addition, we show that defective 3' end formation at an upstream RNA polymerase II-dependent gene explains the apparent derepression of the AtSN1 retroelement in fpa mutants. Transcript readthrough accounts for the absence of changes in DNA methylation and siRNA abundance at AtSN1 in fpa mutants, and this may explain other examples of epigenetic transitions not associated with chromatin modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA

The Arabidopsis protein FPA controls flowering time by regulating the alternative 3'-end processing of the FLOWERING LOCUS (FLC) antisense RNA. FPA belongs to the split ends (SPEN) family of proteins, which contain N-terminal RNA recognition motifs (RRMs) and a SPEN paralog and ortholog C-terminal (SPOC) domain. The SPOC domain is highly conserved among FPA homologs in plants, but the conservat...

متن کامل

Transcription Termination and Chimeric RNA Formation Controlled by Arabidopsis thaliana FPA

Alternative cleavage and polyadenylation influence the coding and regulatory potential of mRNAs and where transcription termination occurs. Although widespread, few regulators of this process are known. The Arabidopsis thaliana protein FPA is a rare example of a trans-acting regulator of poly(A) site choice. Analysing fpa mutants therefore provides an opportunity to reveal generic consequences ...

متن کامل

The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation

RNA-binding proteins (RBPs) play an important role in plant host-microbe interactions. In this study, we show that the plant RBP known as FPA, which regulates 3'-end mRNA polyadenylation, negatively regulates basal resistance to bacterial pathogen Pseudomonas syringae in Arabidopsis. A custom microarray analysis reveals that flg22, a peptide derived from bacterial flagellins, induces expression...

متن کامل

Expression analysis of the Arabidopsis thaliana AtSpen2 gene, and its relationship with other plant genes encoding Spen proteins

Proteins of the Split ends (Spen) family are characterized by an N-terminal domain, with one or more RNA recognition motifs and a SPOC domain. In Arabidopsis thaliana, the Spen protein FPA is involved in the control of flowering time as a component of an autonomous pathway independent of photoperiod. The A. thaliana genome encodes another gene for a putative Spen protein at the locus At4g12640,...

متن کامل

The Nrd1-like protein Seb1 coordinates cotranscriptional 3' end processing and polyadenylation site selection.

Termination of RNA polymerase II (RNAPII) transcription is associated with RNA 3' end formation. For coding genes, termination is initiated by the cleavage/polyadenylation machinery. In contrast, a majority of noncoding transcription events in Saccharomyces cerevisiae does not rely on RNA cleavage for termination but instead terminates via a pathway that requires the Nrd1-Nab3-Sen1 (NNS) comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 18 2  شماره 

صفحات  -

تاریخ انتشار 2010